Parameter Estimation for Generalized Thurstone Choice Models
نویسندگان
چکیده
We consider the maximum likelihood parameter estimation problem for a generalized Thurstone choice model, where choices are top-1 items from comparison sets of two or more items. We provide tight characterizations of the mean square error, as well as necessary and sufficient conditions for correct classification when each item belongs to one of two classes. These results provide insights into how the estimation accuracy depends on the choice of a generalized Thurstone choice model and the structure of comparison sets. We find that for a priori unbiased structures of comparisons, e.g., when comparison sets are drawn independently and uniformly at random, the number of observations needed to achieve a prescribed estimation accuracy depends on the choice of a generalized Thurstone choice model. For a broad set of generalized Thurstone choice models, which includes all popular instances used in practice, the estimation error is shown to be largely insensitive to the cardinality of comparison sets. On the other hand, we found that there exist generalized Thurstone choice models for which the estimation error decreases much faster with the cardinality of comparison sets.
منابع مشابه
Supplementary Material:Parameter Estimation for Generalized Thurstone Choice Models
Let cov[Y ] denote the covariance matrix of a multivariate random variable Y , i. Proposition 7 (Cramér-Rao inequality). Suppose that X is a multivariate random variable with distribution p(x; θ), for parameter θ ∈ Θ n , and let T(X) = (T 1 (X),. .. , T r (X)) be any unbiased estimator of ψ(θ) = (ψ 1
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016